Evaluation of Yield and Yield Components of Rice in Vertical Agro-Photovoltaic System in South Korea

Author:

Jo Hyun12ORCID,Song Jong Tae12ORCID,Cho Hyeonjun1,Lee Sangyeab1,Choi Seungmin1,Jung Ho-Jun3,Lee Hyeong-No3,Lee Jeong-Dong12ORCID

Affiliation:

1. Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea

2. Upland-Field Machinery Research Center, Kyungpook National University, Daegu 41566, Republic of Korea

3. R&D Team, GRANDSUN ENG Inc., Busan 46703, Republic of Korea

Abstract

Renewable energy from photovoltaic power plants has increased in amount globally as an alternative energy to combat global climate change by reducing fossil fuel burning and carbon dioxide (CO2) emissions. The agro-photovoltaic (APV) approach can be a solution to produce solar energy and crop production at the same time by installing solar panels on the same farmland to increase land use efficiency. This study aimed to compare the yield and yield components of rice (Oryza sativa L.) between a vertical APV system and a control field across two years. The solar panels were installed around the rice field in four directions of rice cultivation. Based on the analysis of variance, the primary factor influencing measured yield and yield components was the year effect, whereas the direction effect did not show significance, except for amylose content and ripened grains. Especially for rice production, the rice yield in 2023 was 6.8 t/ha, which was significantly higher by 0.8 t/ha than in 2022. Compared with the control condition, however, there was no significant negative impact on the year-to-year rice yield of the vertical APV system across two years. As rice yield was mainly affected by year, rice yield trials will be required for multiple years to understand the genetic and environmental factors influencing rice production under the vertical APV system.

Funder

Korea government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3