Research and Preliminary Evaluation of Key Technologies for 3D Reconstruction of Pig Bodies Based on 3D Point Clouds

Author:

Lei Kaidong1,Tang Xiangfang1,Li Xiaoli1ORCID,Lu Qinggen1,Long Teng1,Zhang Xinghang1,Xiong Benhai1

Affiliation:

1. State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

In precision livestock farming, the non-contact perception of live pig body measurement data is a critical technological branch that can significantly enhance breeding efficiency, improve animal welfare, and effectively prevent and control diseases. Monitoring pig body measurements allows for accurate assessment of their growth and production performance. Currently, traditional sensing methods rely heavily on manual measurements, which not only have large errors and high workloads but also may cause stress responses in pigs, increasing the risk of African swine fever, and its costs of prevention and control. Therefore, we integrated and developed a system based on a 3D reconstruction model that includes the following contributions: 1. We developed a non-contact system for perceiving pig body measurements using a depth camera. This system, tailored to the specific needs of laboratory and on-site pig farming processes, can accurately acquire pig body data while avoiding stress and considering animal welfare. 2. Data preprocessing was performed using Gaussian filtering, mean filtering, and median filtering, followed by effective estimation of normals using methods such as least squares, principal component analysis (PCA), and random sample consensus (RANSAC). These steps enhance the quality and efficiency of point cloud processing, ensuring the reliability of 3D reconstruction tasks. 3. Experimental evidence showed that the use of the RANSAC method can significantly speed up 3D reconstruction, effectively reconstructing smooth surfaces of pigs. 4. For the acquisition of smooth surfaces in 3D reconstruction, experimental evidence demonstrated that the RANSAC method significantly improves the speed of reconstruction. 5. Experimental results indicated that the relative errors for chest girth and hip width were 3.55% and 2.83%, respectively. Faced with complex pigsty application scenarios, the technology we provided can effectively perceive pig body measurement data, meeting the needs of modern production.

Funder

National Science and Technology Major Project of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3