YOLOv8MS: Algorithm for Solving Difficulties in Multiple Object Tracking of Simulated Corn Combining Feature Fusion Network and Attention Mechanism

Author:

Gao Yuliang1ORCID,Li Zhen2ORCID,Li Bin3,Zhang Lifeng1ORCID

Affiliation:

1. Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-0015, Japan

2. School of Electrical Engineering, Nantong University, Nantong 226021, China

3. College of Artificial Intelligence, Yangzhou University, Yangzhou 225012, China

Abstract

The automatic cultivation of corn has become a significant research focus, with precision equipment operation being a key aspect of smart agriculture’s advancement. This work explores the tracking process of corn, simulating the detection and approach phases while addressing three major challenges in multiple object tracking: severe occlusion, dense object presence, and varying viewing angles. To effectively simulate these challenging conditions, a multiple object tracking dataset using simulated corn was created. To enhance accuracy and stability in corn tracking, an optimization algorithm, YOLOv8MS, is proposed based on YOLOv8. Multi-layer Fusion Diffusion Network (MFDN) is proposed for improved detection of objects of varying sizes, and the Separated and Enhancement Attention Module (SEAM) is introduced to tackle occlusion issues. Experimental results show that YOLOv8MS significantly enhances the detection accuracy, tracking accuracy and tracking stability, achieving a mean average precision (mAP) of 89.6% and a multiple object tracking accuracy (MOTA) of 92.5%, which are 1% and 6.1% improvements over the original YOLOv8, respectively. Furthermore, there was an average improvement of 4% in the identity stability indicator of tracking. This work provides essential technical support for precision agriculture in detecting and tracking corn.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3