Identification of Conserved Pathways in Bacillus Strains Known for Plant Growth-Promoting Behavior Using a Multifaceted Computational Approach

Author:

Das Vandana Apurva1ORCID,Gautam Budhayash1,Yadav Pramod Kumar1,Singh Satendra1

Affiliation:

1. Department of Computational Biology and Bioinformatics, JIBB, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj (Allahabad) 211007, UP, India

Abstract

Bacillus strains have long been recognized for their beneficial interactions with plants, enhancing growth, nutrient uptake, and stress resistance. Understanding their molecular mechanisms and plant-microbe interactions is crucial for harnessing their potential in sustainable agriculture. Here we used ten strains from the 5 Bacillus species namely Bacillus velezensis, Bacillus subtilis, Bacillus atrophaeus, Bacillus altitudinis and Bacillus amylofaciens, which are previously reported for PGPR activity. A comparative analysis of these strains was performed to determine their evolutionary relationships, which revealed that Bacillus velezensis and Bacillus amyloliquefaciens are closely related based on underlying genetic and proteomic similarities. Bacillus altitudinis strain LZP02 was the most distantly related to all the other selected strains. On the other hand, Bacillus atrophaeus strains GQJK17 and CNY01 are shown to be closely related to each other. Mauve alignment was performed to determine the genetic relationships between these strains. The LZP02 strain exhibited several unique inversions harboring important genes, such as betB, ftsW, and rodA, which are important for bacterial survival. Proteomic analysis highlighted important pathways that were conserved across these strains, including xenobiotic biodegradation and metabolism, biosynthesis of polyketides and nonribosomal pathways, and biosynthesis of secondary metabolites, all of which have been shown to be involved in plant growth promotion.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3