Effectiveness of Common Preprocessing Methods of Time Series for Monitoring Crop Distribution in Kenya

Author:

Ni Rui,Zhu Xiaohui,Lei Yuping,Li Xiaoxin,Dong Wenxu,Zhang Chuang,Chen Tuo,Mburu David M.,Hu Chunsheng

Abstract

Accurate crop identification and spatial distribution mapping are important for crop production estimation and famine early warning, especially for food-deficit African agricultural countries. By evaluating existing preprocessing methods for classification using satellite image time series (SITS) in Kenya, this study aimed to provide a low-cost method for cultivated land monitoring in sub-Saharan Africa that lacks financial support. SITS were composed of a set of MODIS Vegetation Indices (MOD13Q1) in 2018, and the classification method included the Support Vector Machine (SVM) and Random Forest (RF) classifier. Eight datasets obtained at three levels of preprocessing from MOD13Q1 were used in the classification: (1) raw SITS of vegetation indices (R-NDVI, R-EVI, and R-NDVI + R-EVI); (2) smoothed SITS of vegetation indices (S-NDVI); and (3) vegetation phenological data (P-NDVI, P-EVI, R-NDVI + P-NDVI, and P-NDVI-1). Both SVM and RF classification results showed that the “R-NDVI + R-EVI” dataset achieved the highest performance, while the three pure phenological datasets produced the lowest accuracy. Correlation analysis between variable importance and rainfall time series demonstrated that the vegetation index SITS during rainfall periods showed higher importance in RF classifiers, thus revealing the potential of saving computational costs. Considering the preprocessing cost of SITS and its negative impact on the classification accuracy, we recommend overlaying the original NDVI with the original EVI time series to map the crop distribution in Kenya.

Funder

Sino-Africa Joint Research Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3