Multi-Tooth Cutting Method and Bionic Cutter Design for Broccoli Xylem (Brassica oleracea L. var. Italica Plenck)

Author:

Cao Yunlong1,Yu Yao1,Tang Zhong1ORCID,Zhao Yunfei1,Gu Xinyang1,Liu Sifan1,Chen Shuren1

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

During the harvesting of cut-stem vegetables, the structural parameters of cutters have an important influence on the harvesting effect. Structural parameters of stalks directly affect the cutting effect of the cutter. The thickness of the stalk xylem has a strong influence on the cutting stability and cutting surface effect of the cutter. In this paper, the effect of the broccoli stalk xylem on conventional toothless cutters was investigated using broccoli stalks as the cutting object. It was found that a thicker xylem leads to shear force fluctuations, which in turn affects the smooth operation of the cutting device. Taking locust mouthparts as the research object, a bionic multi-tooth cutting method is proposed in this paper to obtain the contour curve based on the locust upper jaw cutting tooth lobe. By establishing the regression equation, the contour curve of the cutting teeth is fitted accurately. The cutter edge is designed with the locust’s maxillary incisive lobe as the bionic object. ANSYS software was used to simulate the cutting of a double disc cutter and broccoli stalk. The effect of each factor was analyzed by response-surface regression to determine the optimal cutter speed, machine forward speed, cutting inclination, blade overlap, and optimal cutting position. The cutting test is verified via broccoli stalks and a cutting test bench to further determine the cutting device operating parameters. The optimal operating parameters of the cutting device were 0.239 m/s forward speed, 30.974-degree cutting edge angle, 10.066 mm blade overlap, and 467.511 rpm.

Funder

Single Technology Research and Development Project of Jiangsu Agricultural Science and Technology Innovation Fund

Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment

Jiangsu University College Students practice innovation Training Program Project

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3