Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022

Author:

Zhang Futao1,Liu Yuedong1,Zhang Yueling1

Affiliation:

1. State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

Abstract

The change in agricultural soil organic carbon (SOC) at a global scale has a great impact on the soil quality, crop yields, and greenhouse gas concentration in the atmosphere. Plant-derived C input into soil is an effective strategy to increase the SOC; meanwhile, it promotes SOC mineralization. The SOC dynamics after plant-derived C input have received widespread attention in the past 20 years. This bibliometric study was performed to identify the basic characteristics, research output, and knowledge base as well as to understand the research trends and key topics of agricultural SOC mineralization. We collected data from the Web of Science Core Collection databases, with dates ranging from 2000 to 2022. The parameter calculated from the default indicators of bibliometric software tools was used to indicate the contribution of the journal/author/institution/countries. The activity and attractive index were calculated separately to evaluate the relative effort and impact made by a country. The results showed that: (1) the number of articles increased gradually during 2000–2010 and thereafter sharply increased; (2) Soil Biology & Biochemistry was the most representative journal, and agriculture was the most popular subject category; (3) the most productive institution was the Chinese Academy of Sciences, which is based China and cooperates closely with other institutions; (4) although the number of articles from China was the largest, both the cited frequency and activity index were much lower for China than for the USA, which had the highest citation and centrality among countries; and (5) the studies involving agricultural SOC mineralization have primarily investigated the effect of exogenous C and nutrient addition, as well as biotic processes, especially the microbial process. We concluded that there was an increasing trend in research on agricultural SOC mineralization, with a focus on the interaction between SOC and nutrient/microbial communities. The physical processes, such as the association of minerals and occlusion of aggregate and pores, were paid less attention relative to biotic processes despite their importance in SOC mineralization. Through an in-depth analysis of agricultural SOC mineralization research, this study provides a better understanding of development trends that have emerged in this field over the past 22 years. In future studies, more attention should be paid to the physical processes to understand the physical protection mechanism of agricultural SOC mineralization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3