Abstract
The temperature-based crop water stress index (CWSI) can accurately reflect the extent of crop water deficit. As an ideal carrier of onboard thermometers to monitor canopy temperature (Tc), center pivot irrigation systems (CPIS) have been widely used in precision irrigation. However, the determination of reliable CWSI thresholds for initiating the CPIS is still a challenge for a winter wheat–summer maize cropping system in the North China Plain (NCP). To address this problem, field experiments were carried out to investigate the effects of CWSI thresholds on grain yield (GY) and water use efficiency (WUE) of winter wheat and summer maize in the NCP. The results show that positive linear functions were fitted to the relationships between CWSI and canopy minus air temperature (Tc − Ta) (r2 > 0.695), and between crop evapotranspiration (ETc) and Tc (r2 > 0.548) for both crops. To make analysis comparable, GY and WUE data were normalized to a range of 0.0 to 1.0, corresponding the range of CWSI. With the increase in CWSI, a positive linear relationship was observed for WUE (r2 = 0.873), while a significant inverse relationship was found for the GY (r2 = 0.915) of winter wheat. Quadratic functions were fitted for both the GY (r2 = 0.856) and WUE (r2 = 0.629) of summer maize. By solving the cross values of the two GY and WUE functions for each crop, CWSI thresholds were proposed as being 0.322 for winter wheat, and 0.299 for summer maize, corresponding to a Tc − Ta threshold value of 0.925 and 0.498 °C, respectively. We conclude that farmers can achieve the dual goals of high GY and high WUE using the optimal thresholds proposed for a winter wheat–summer maize cropping system in the NCP.
Funder
National Key Research and Development Program of China
Agriculture Research System of China
Central Public-Interest Scientific Institution Basal Research Fund, Chinese Academy of Agricultural Sciences
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献