The Transformation Dynamics and Homogeneity of Different N Fractions in Compost following Glucose Addition

Author:

Li Caibin,Ding Shuai,Du Chenghang,He Yi,Ma Zemeng,Li Guitong,Sun Zhencai

Abstract

The application of compost to soil is a common fertilization practice for improving soil quality and crop growth. The isotopic labeling technique is mostly used to investigate the contribution of compost N to crop uptake. However, compost N includes various N fractions and labeling dissimilarity, which may cause bias when calculating the compost N contribution to plants. Therefore, the labeling dynamics of different N fractions in compost and the homogenous labeling time point should be clarified. Given the 15N-labeling in chemical fertilizer and the carbon source, i.e., glucose, the compost N pools were divided into active N (mineral N, soluble organic N [SON], microbial biomass N [MBN]), stable N (hot-water extractable organic N [HWDON]), and recalcitrant N. The atom percentage excess (APE) of different N in compost notably varied at the beginning of incubation, ranging from 0–3.7%. After the addition of glucose, biological N immobilization was promoted (13.7% and 28.8% for MBN and HWDON, respectively) and promoted the transformation among available N pools. Adding distinct doses of glucose at three stages to 15N-labeled compost resulted in diverse microbial responses, thereby redistributing exogenous N in each fraction (15NH4+-N went into SO15N from day 15 to day 30 and increased by 5.1%; SO15N entered MB15N and HWDO15N during day 30 to day 45 and increased by 5.7% and 5.2%, respectively). On day 45, homogeneous 15N-labeled compost was achieved, which was 2.4% for 15N APE for all N fractions. Overall, the quantitative data for the transformation of N fractions in compost at distinct stages provides a scientific basis for compost labeling trials, in order to identify the time point at which compost N-labeling is homogeneous, which is necessary and meaningful to reduce the bias of the contribution rate of compost-N to plants.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3