Amendment of Livestock Manure with Natural Zeolite-Clinoptilolite and Its Effect on Decomposition Processes during Composting

Author:

Šubová Eva,Sasáková Naďa,Zigo FrantišekORCID,Mindžáková Ingrid,Vargová Mária,Kachnič Ján,Laktičová Katarína Veselitz

Abstract

The aim of study was to investigate the effect of amendment of cow manure with natural zeolite-clinoptilolite and hydrated lime on decomposition processes over the period of 90 days. Two static piles of amended substrates were constructed consisting of cow manure with an addition of bulking material (2.5% by weight): (1) manure mixed with zeolite (S1); manure mixed with zeolite and lime (S2). Third amendment-free pile served as a control (C). During the experiment, pH level, temperature (T), dry matter (DM), ash, organic matter (OM), C/N ratio, ammonia nitrogen (N-NH4+) and total nitrogen (Nt) were determined. We also determined the counts of total coliform and faecal coliform bacteria and faecal streptococci as indicators of the hygiene level of compost. A significant increase (p < 0.001) in temperature to 53 °C was observed in S2 compared to C. In S2 we observed a significantly reduced release of N-NH4+ from the composting substrate compared to C (p < 0.05). The significant differences were in Nt content in C and S2 (p < 0.001) and between S1 and S2 (p < 0.05). The concentration of Nt increased and caused decrease in the C/N ratio. The content of Nt in the substrates with zeolite increased by 44% in S1 and 45% in S2 compared to C. The differences in counts of coliform and faecal coliform bacteria between C and S2 were significant (p < 0.001). This experiment showed that amendment with zeolite and lime decreased nitrogen losses during composting and indicated sorption effects of zeolite.

Funder

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3