Effects of Unmanned Aerial Spray System Flight Altitude and Collector Height on Spray Deposition Measured Using a Food Dye Tracer

Author:

Lee Chun-Gu,Yu Seung-Hwa,Rhee Joong-YongORCID

Abstract

The use of unmanned aerial spray systems (UASS) has increased owing to their many advantages. However, studies related to a standardized method to evaluate the spray performance of UASS are lacking. Therefore, in the present study, a quantitative analytical method using a food dye tracer was compared with the image analysis method, and the effects of experimental conditions on spray deposition were assessed. Concordance between the results of quantitative and image analyses was examined. The coverage of water-sensitive paper (WSP) and Medley Velvet (MV) was compared using image analysis. Moreover, the effects of flight altitude and collector height on spray deposition amount and effective spray width were evaluated. The results showed a significant correlation between the deposition and the coverage of MV (R2 = 0.6782, p-level < 0.001). The coverage of MV is different from that of WSP. In addition, the correlation coefficient between the coverage of WSP and that of MV was smaller than the correlation coefficient between depositions and the coverage of MV. Therefore, MV should be used instead of WSP for more accurate analysis. The lower the collector height, the smaller the deposition amount. The effective spray width increased as the distance between the collector and UASS increased, whereas the total deposition amount decreased when the collector was close to the ground. Overall, using a food dye tracer, both quantitative and qualitative analyses can be applied simultaneously, and this method may replace analysis using WSP.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference40 articles.

1. Crop losses to pests;Oerke;J. Agric. Sci.,2006

2. Spray drift and bystander risk from fruit crop spraying;Zande;Asp. Appl. Biol.,2014

3. Pesticide Application Technology: Research and Development and the Growth of the Industry;Giles;Trans. ASABE,2008

4. (2021). Standard No. ISO/CD 23117-1.

5. Develop an unmanned aerial vehicle based automatic aerial spraying system;Xue;Comput. Electron. Agric.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3