Research on Flexible End-Effectors with Humanoid Grasp Function for Small Spherical Fruit Picking

Author:

Zhang FuORCID,Chen Zijun,Wang YafeiORCID,Bao Ruofei,Chen Xingguang,Fu Sanling,Tian Mimi,Zhang Yakun

Abstract

The rapid, stable, and undamaged picking of small-sized spherical fruits are one of the key technologies to improve the level of intelligent picking robots and reduce grading operations. Cherry tomatoes were selected as the research object in this work. Picking strategies of two-stage “Holding-Rotating” and finger-end grasping were determined. The end-effector was designed to separate the fruit from the stalk based on the linear motion of the constraint part and the rotating gripper. This work first studied the human hand-grasping of cherry tomatoes and designed the fingers with sinusoidal characteristics. The mathematical model of a single finger of the gripper was established. The structural parameters of the gripper were determined to meet the requirements of the grabbing range from 0 to 61.6 mm. Based on the simulation model, the constraint part was set to 6 speeds, and the fruit sizes were set to 20 mm, 30 mm, and 40 mm, respectively. When the speed was 0.08m/s, the results showed that the grabbing time was 0.5381 s, 0.387 s, and 0.2761 s, respectively, and the maximum grabbing force was 0.9717 N, 3.5077 N, and 4.0003 N now of clamping, respectively. It met the picking requirements of high speed and low loss. The criterions of two-index stability and undamaged were proposed, including the grasping index of the fixed value and the slip detection of variance to mean ratio. Therefore, the control strategy and algorithm based on two-stage and two-index for rapid, stable, and non-destructive harvesting of small fruit were proposed. The results of the picking experiment for seventy-two cherry tomatoes showed that the picking success rate was 95.82%, the average picking time was 4.86 s, the picking damage rate was 2.90%, the browning rate was 2.90% in 72 h, and the wrinkling rate was 1.49% in 72 h, which can meet the actual small spherical fruit picking requirements. The research will provide an idea for the flexible end-effectors with humanoid grasp function and provides a theoretical reference for small spherical fruit picking.

Funder

National Natural Science Foundation of China

Scientific and Technological Project of Henan Province

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3