Design and Test of Duckbill Welding Robot for Cotton Seeder

Author:

Ren Yu,Guo Wensong,Wang Xufeng,Hu CanORCID,Wang Long,He Xiaowei,Xing Jianfei

Abstract

To improve the automation, welding efficiency, and welding quality of duckbill welding of the cotton seeder, this study designed a cotton seeder duckbill welding robot. According to the characteristics of the duckbill weldment and welding requirements, the overall structure of the welding robot was determined, including the girdle feeding mechanism, static duckbill feeding mechanism, hinge feeding mechanism, welding fixture, welding actuator, and control system. To realize the continuous automatic feeding, positioning, fixing, welding, and unloading of the workpiece in the duckbill welding, the feeding mechanism adopts the method of cooperative cooperation of inductive proximity switch, electromagnet, and cylinder. The main body of the welding fixture adopts the pneumatic clamping method; the welding actuator adopts the synchronous belt module electric drive so that the welding torch can move in a straight line along the X axis and the Z axis. The welding process of the duckbill was simulated by Simufact Welding software, and the deformation and stress changes of the weldment were compared and analyzed when the single-sided single welding, the bilateral symmetrical double welding torch, two welding forms, and two welding process parameters were used to determine the welding process parameters of the welding robot. The prototype was made and the welding test was carried out. The test results show that the duckbill welding robot of the cotton seeder has stable feeding, solid clamping, accurate positioning, and high welding efficiency. According to the national standard, the appearance of the duckbill weld is inspected. The surface of the duckbill weld and the heat-affected zone has no cracks, incomplete fusion, slag inclusion, crater, and porosity. The forming quality of the welded parts is good. The design of the duckbill welding robot for cotton seeder is helpful in solving the problems of cumbersome positioning and clamping and low efficiency in manual and semi-automatic duckbill welding robots, which provides a strong guarantee for the large-scale and standardized welding production of the dibbler duckbill.

Funder

Bingtuan Science and Technology Program

Innovation research team project of Tarim University

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3