Impact-Type Sunflower Yield Sensor Signal Denoising Method Based on CEEMD-WTD

Author:

Wang Shuai,Zhao Xiaodong,Liu Wenhang,Du Jianqiang,Zhao Dongxu,Yu Zhihong

Abstract

During the crop harvesting process, it is important to obtain the crop yield quickly, accurately and in real time to accelerate the development of smart agriculture. This paper investigated a denoising method applicable to the impact-type sunflower yield sensor signal under the influence of complex noise background in the pneumatic seed delivery structure for a sunflower combine harvester. A signal processing method combining complementary ensemble empirical mode decomposition (CEEMD) and wavelet threshold denoising (WTD) based on an adaptive decomposition capability was proposed by analyzing the non-smoothness of the signal with the impact-type sunflower yield sensor signal in sunflower fields. CEEMD was used to decompose the sunflower seed impact analog signal and field impact-type sunflower yield sensor signal adaptively, and the high frequency components were processed by WTD. Finally the de-noised signal was obtained by reconstruction. An evaluation objective function of the denoising ability of the algorithm based on signal-noise ratio, root mean square error, smoothness and waveform similarity indexes with different weights was also constructed. The results showed that the evaluation objective functions of the simulated and measured signals after denoising by the CEEMD-WTD method are 1.9719 and 4.5318, respectively, which are better than the single denoising methods of EMD (1.5096 and 4.0012), EEMD (1.8248 and 4.0724), CEEMD (1.9516 and 4.3384), and WTD (1.8737 and 4.5294). This method provides a new idea for signal denoising of the impact-type sunflower yield sensor installed in the pneumatic seed delivery structure, and further provides theoretical support and technical references for the development of sunflower high-precision yield measurements in smart agriculture.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference39 articles.

1. Demand of Sunflower Market and Breeding Direction;Yang;J. Shanxi Agric. Sci.,2018

2. China Telecom Smart Agriculture Research Group (2013). Smart Agriculture: ICT Leads to Green Development, Publishing House of Electronics Industry.

3. Security challenges to smart agriculture: Current state, key issues, and future directions;Silva;Array,2020

4. Internet of Things in agriculture, recent advances and future challenges;Tzounis;Biosyst. Eng.,2017

5. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges;Torky;Comput. Electron. Agric.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3