Abstract
In this paper, a bidirectional converter with multi-mode control strategies is proposed for a battery energy storage system (BESS). This proposed converter, which is composed of a half-bridge-type dual-active-bridge (HBDAB) converter and an H-bridge inverter, is able to operate the BESS with different power conditions and achieve the DC–AC function for lower input DC voltage applications. For the HBDAB converter, the variable-frequency control (VFC) and phase-shift control (PSC) are both adopted to achieve zero-voltage switching over a wider power range and the battery module balance control capability for BESS, respectively. In addition, the interleaved configuration is used to reduce the current ripple and increase the overall current rating. For the H-bridge inverter, the unipolar control mode (UCM) and totem-pole control mode (TPCM) are adopted to manage the real and reactive current control under different AC grid conditions. The UCM offers a reduction in current ripple for real and reactive power control. The TPCM is able to eliminate switching losses and achieve higher conversion efficiency for pure real power control. Considering applications for battery energy storage systems, the principle of operation and voltage gain analysis are described. Finally, computer simulations and hardware experimental results from a prototype system are presented to verify the performance of the proposed converter with the different control strategies.
Funder
Institute of Nuclear Energy Research, Taiwan
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Method for Monitoring the Consumption, Performance and Status of Batteries in Electronic Devices;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23