Multi-Mode Control of a Bidirectional Converter for Battery Energy Storage System

Author:

Lo Kuo-Yuan,Liu Kuo-HsiangORCID,Chen Li-Xin,Chen Ching-Yu,Shih Chang-Heng,Lin Jyun-Ting

Abstract

In this paper, a bidirectional converter with multi-mode control strategies is proposed for a battery energy storage system (BESS). This proposed converter, which is composed of a half-bridge-type dual-active-bridge (HBDAB) converter and an H-bridge inverter, is able to operate the BESS with different power conditions and achieve the DC–AC function for lower input DC voltage applications. For the HBDAB converter, the variable-frequency control (VFC) and phase-shift control (PSC) are both adopted to achieve zero-voltage switching over a wider power range and the battery module balance control capability for BESS, respectively. In addition, the interleaved configuration is used to reduce the current ripple and increase the overall current rating. For the H-bridge inverter, the unipolar control mode (UCM) and totem-pole control mode (TPCM) are adopted to manage the real and reactive current control under different AC grid conditions. The UCM offers a reduction in current ripple for real and reactive power control. The TPCM is able to eliminate switching losses and achieve higher conversion efficiency for pure real power control. Considering applications for battery energy storage systems, the principle of operation and voltage gain analysis are described. Finally, computer simulations and hardware experimental results from a prototype system are presented to verify the performance of the proposed converter with the different control strategies.

Funder

Institute of Nuclear Energy Research, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method for Monitoring the Consumption, Performance and Status of Batteries in Electronic Devices;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3