LIKA: Lightweight Identity Based Key Agreement Protocol for Secure Data Transmission in Advanced Metering Infrastructure of Smart Grid

Author:

Hasan Md MehediORCID,Mohd Ariffin Noor Afiza,Mohd Sani Nor Fazlida

Abstract

Integration of information communication technology via the Internet of Things devices and sensors can enable an efficient power service for utility providers to consumers in advanced metering infrastructure. Authentication and cryptographic mechanisms protect identity, data security and privacy from unauthorised interception for smart meters to servers. In the last couple of years, many key agreement protocols have been prescribed and deployed to fix those issues. Unfortunately, the deployed protocols did not work inside the same protocols, specifically parameter detection and recognition for session key generation, as they entail high computation time and communication bits overheads. Furthermore, the absence of forward secrecy and user anonymity affects the authentication. Therefore, we have proposed a lightweight identity-based key agreement (LIKA) utilising the Diffie–Hellman cryptography with a trusted authority. It seeks to cover both the security and performance criteria with equal weight. The protocol is evaluated by the Canetti and Krawczyk adversarial model, Avispa and cryptographic analysis released the session keys that were not considered as an adversary during mutual authentication. Moreover, as compared to related work, the proposed protocol took the least amount of time (5.319 ms and 1056 bits) for the entire process of session key generation. Furthermore, comparative analysis has shown that the LIKA adequately encompasses computation, communication, and security assessments. Consequently, it is more convenient for practical implementation for a smart grid.

Funder

Universiti Putra Malaysia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3