Abstract
The ammonia oxidation reaction on solid platinum–rhodium gauze is a critical step in nitric acid production. As the global demand for food and fertilisers keeps steadily growing, this remains an essential reaction in the chemical industry. However, harsh conditions inside ammonia burners lead to the degradation of catalytic meshes, severely hindering this process. This manuscript is focused on two issues. The first is the influence of catalyst gauze geometry and process parameters on the efficiency of ammonia oxidation on platinum–rhodium gauze. The second investigated problem is the influence of geometry on catalyst fibre degradation and the movement and deposition of entrained platinum particles. Computational Fluid Dynamics was utilised in this work for calculations. Different catalyst gauze geometries were chosen to examine the relationship between wire geometry and heat and mass transfer by analysing temperature and flow fields. Significantly, the analysis of the temperature gradient on the catalyst surface allowed us to estimate the spots of highest wire degradation and to track lifted platinum particles. The Discrete Phase Model was used to calculate entrained platinum particle trajectories and their deposition’s localisation and efficiency.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference26 articles.
1. Hoque, A., Mohiuddin, M., and Su, Z. Effects of Industrial Operations on Socio-Environmental and Public Health Degradation: Evidence from a Least Developing Country (LDC). Sustainability, 2018. 10.
2. Assessment of the vegetation risk by fluoride emissions from fertiliser industries at CubaGo, Brazil;Klumpp;Sci. Total Environ.,1996
3. Roser, M., and Ritchie, H. Hunger and Undernourishment. 2022.
4. Warner, M. The Kinetics of Industrial Ammonia Combustion. Ph.D. Thesis, 2013.
5. Ammonia synthesis kinetics: Surface chemistry, rate expressions, and kinetic analysis;Aparicio;Top. Catal.,1994