Experimental and Numerical Investigation on the Dynamics of Impacting Droplet Spreading at Small Weber Numbers

Author:

Wang NingORCID,Zhang Jiqing,Zhang Zhenyu

Abstract

The dynamic of droplet spreading on a free-slip surface was studied experimentally and numerically, with particularly interest in the impacts under relatively small droplet inertias (We≤30). Our experimental results and numerical predictions of dimensionless droplet maximum spreading diameter βmax agree well with those of Wildeman et al.’s widely-used model at We>30. The “1/2 rule” (i.e., approximately one half of the initial kinetic energy Ek0 finally transferred into surface energy) was found to break down at small Weber numbers (We≤30) and droplet height is non-negligible when the energy conservation approach is employed to estimate βmax. As We increases, surface energy and kinetic energy alternately dominates the energy budget. When the initial kinetic energy is comparable to the initial surface energy, competition between surface energy and kinetic energy finally results in the non-monotonic energy budget. In this case, gas viscous dissipation contributes the majority of the dissipated energy under relatively large Reynolds numbers. A practical model for estimating βmax under small Weber numbers (We≤30) was proposed by accounting for the influence of impact parameters on the energy budget and the droplet height. Good agreement was found between our model predictions and previous experiments.

Funder

National Natural Science Foundation of China

Ministry of Industry and Information Technology

Beijing Institute of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bounds on the spreading radius in droplet impact: the inviscid case;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07

2. The Spreading Characteristics of Droplets Impacting Wheat Leaves Based on the VOF Model;Coatings;2023-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3