Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality

Author:

Zhu Di,Wang Yinghong,Zhang Fenglin

Abstract

In the context of international carbon neutrality, energy prices are affected by several nonlinear and nonstationary factors, making it challenging for traditional forecasting models to predict energy prices effectively. The existing literature mainly uses linear models or a combination of multiple models to forecast energy prices. For the nonlinear relationship between variables and the mining of historical data information, the prediction strategy and accuracy of the existing literature need to be improved. Thus, this paper improves the prediction accuracy of energy prices by developing a “decomposition-reconstruction-integration” thinking strategy that affords medium- and short-term energy price prediction based on carbon constraint, eigenvalue transformation and deep learning neural networks. Considering 2011–2020 as the research period, the prices for traditional energy resources and polysilicon in clean photovoltaic energy raw materials are selected as representatives. Based on energy price decomposition using the Singular Spectrum Analysis (SSA) method, and combining it with Learning Vector Quantization (LVQ) cluster technology, the decomposed quantities are aggregated into price sequences with different characteristics. Additionally, the carbon intensity is considered the leading market’s overall constraint, which is input with the processed price data into a Long Short-Term Memory network (LSTM) model for training. Thus, the SSA-LSTM combined forecasting model is developed to predict the energy price under carbon neutrality. Four indices are employed to evaluate the prediction accuracy: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and R-squared. The results highlight the following observations. (1) Using a sequence decomposition clustering strategy significantly improves the model’s prediction accuracy. This strategy enhances predicting the overall trend of the price series and the changes in different periods. For coal price, the RMSE value decreased from 0.135 to 0.098, the MAE value decreased from 0.087 to 0.054, the MAPE value decreased from 0.072 to 0.064, and the R-squared value increased from 0.643 to 0.725. Regarding the polysilicon price, the RMSE value decreased from 0.121 to 0.096, the MAE value decreased from 0.068 to 0.064, the MAPE value decreased from 0.069 to 0.048, and the R-squared value increased from 0.718 to 0.764. (2) The prediction effect is better in the case of carbon constraint. Considering “carbon emission intensity” as the overall constraint of the leading market, it can effectively explore the typical characteristics of energy price information. Four evaluation indicators show that the accuracy of the model prediction can be improved by more than 3%. (3) When the proposed SSA-LSTM model is used to predict both prices, the results show that the evaluation index of the prediction error remained at about 1%, while the model’s accuracy was high. This also proves that the proposed model can predict traditional energy prices and new energy sources such as solar energy.

Funder

Youth Program of the National Natural Science Foundation of China

Youth Program of Humanities and Social Sciences of the Ministry of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3