Synthesis of Micron-Sized LiNi0.8Co0.1Mn0.1O2 and Its Application in Bimodal Distributed High Energy Density Li-Ion Battery Cathodes

Author:

Lin Chia-Hsin,Parthasarathi Senthil-KumarORCID,Bolloju SatishORCID,Abdollahifar MozaffarORCID,Weng Yu-Ting,Wu Nae-LihORCID

Abstract

The uniform and smaller-sized (~3 μm) LiNi0.8Co0.1Mn0.1O2 (SNCM) particles are prepared via a fast nucleation process of oxalate co-precipitation, followed by a two-step calcination procedure. It is found that the fast nucleation by vigorous agitation enables us to produce oxalate nuclei having a uniform size which then grow into micron-particles in less than a few minutes. The impacts of solution pH, precipitation time, calcination temperature, and surface modification with ZrO2 on the structural, morphological, and electrochemical properties of SNCM are systematically examined to identify the optimal synthetic conditions. A novel bimodal cathode design has been highlighted by using the combination of the SNCM particles and the conventional large (~10 μm) LiNi0.83Co0.12Mn0.05O2 (LNCM) particles to achieve the high volumetric energy density of cathode. The volumetric discharge capacity is found to be 526.6 mAh/cm3 for the bimodal cathode L80% + S20%, whereas the volumetric discharge capacity is found to be only 480.3 and 360.6 mAh/cm3 for L100% and S100% unimodal, respectively. Moreover, the optimal bi-modal cathode delivered higher specific energy (622.4 Wh/kg) and volumetric energy density (1622.6 Wh/L) than the L100% unimodal (596.1 Wh/kg and 1402.1 Wh/L) cathode after the 100th cycle. This study points to the promising utility of the SNCM material in Li-ion battery applications.

Funder

Ministry of education, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3