Effect of Airflow Non-Uniformities on the Thermal Performance of Water–Air Heat Exchangers—Experimental Study and Analysis

Author:

Khaled MahmoudORCID,Mortada Mostafa,Faraj Jalal,Chahine Khaled,Lemenand ThierryORCID,Ramadan Haitham S.

Abstract

The thermal performance of fin-and-tube heat exchangers (HX) is a crucial aspect in a multitude of applications and fields; several design and operational parameters influence this performance. This study focuses on the issue of flow maldistribution and its effect on the HX thermal performance. For this purpose, an experimental setup is designed and implemented to emulate the conditions under which an automotive heat exchanger operates in regard to the non-uniform upstream airflow velocity distribution over the HX surface. The setup allows obtaining various configurations of airflow velocity non-uniformity of some desired mean velocity and standard deviation. The experimental results reveal that a higher degree of non-uniformity (higher standard deviation of the velocity distribution) causes an increased deterioration of the HX thermal performance. For example, at a water flowrate of 200 L/h and a mean airflow velocity of 2 m/s, increasing the standard deviation from 0 to 2 m/s (i.e., moving from the lowest to highest degrees of non-uniformity) causes a total deterioration of 27% in the performance (3.78 to 2.75 kW, respectively), which can also be observed in the increased level of outlet water temperature (53.8 to 58.2 °C, respectively). The obtained results confirm the numerical results reported in the literature.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3