Abstract
The paper proposes a power flow control strategy for a P2 parallel plug-in hybrid electric vehicle (PHEV) which takes into account torque and power losses related to engine-on and gear shift transients. An extended backward-looking (EXT-BWD) model is proposed to account for the transient losses, while the control strategy combines a rule-based controller with an equivalent consumption minimization strategy. To describe the transient losses, the EXT-BWD model includes additional state variables related to engine on/off flag and gear ratio in the previous time step. To establish a performance benchmark for control strategy verification, a dynamic programming-based control variable optimization framework is established based on the EXT-BWD model. The proposed control strategy is demonstrated to improve the fuel efficiency and drivability compared to the original control strategy while retaining comparable computational efficiency.
Funder
Croatian Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献