A Comparative Study of Fuzzy SMC with Adaptive Fuzzy PID for Sensorless Speed Control of Six-Phase Induction Motor

Author:

Wogi LelisaORCID,Ayana TadeleORCID,Morawiec MarcinORCID,Jąderko AndrzejORCID

Abstract

Multi-phase motors have recently replaced three-phase induction motors in a variety of applications due to the numerous benefits they provide, and the absence of speed sensors promotes induction motors with variable speed drives. Sensorless speed control minimizes unnecessary speed encoder cost, reduces maintenance, and improves the motor drive’s reliability. The performance comparison of the fuzzy sliding mode controller (FSMC) with adaptive fuzzy proportional integral derivative (AFPID) control methods for sensorless speed control of six-phase induction motors was analyzed in this study, and the proposed control system has an advantage for multiphase machines, specifically six-phase induction motors (IMs) in this study, as they are the current active research area for electric vehicles, hybrid electric vehicles, aerospace, ship propulsion, and high-power applications. The speed control of a six-phase induction motor was performed by using an AFPID controller and FSMC. The comparative performance analysis was based on sensorless speed control of the six-phase induction motor. A proportional integral derivative (PID) controller is commonly employed as it is used to eliminate oscillations, but it has several drawbacks, such as taking a long time to decrease the error and stabilize the system at constant speed. The fuzzy type-2 and PID controllers were hybridized so as to obtain the advantages of both to enhance the system performance. Finally, the comparison result revealed that the FSMC preforms significantly better by achieving good tracking performance. The control technique maintains the sliding mode approach’s robustness while providing reduced overshoots with a smooth control action, and the FSMC revealed good dynamic response under load variations when compared to the AFPID controller.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

1. An Enhanced Sliding Mode Speed Control for Induction Motor Drives

2. A Novel Asynchronous Control for Artificial Delayed Markovian Jump Systems via Output Feedback Sliding Mode Approach

3. Bifurcation Analysis of Five-Phase Induction Motor Drives With Third Harmonic Injection

4. Modeling and analysis of six–phase induction machine under fault condition;Mira;Proceedings of the Power Electronics Conference (COBEP’09),2009

5. Editorial—Special Issue on Multi-Phase Motor Drives;Levi;EPE J.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3