Influence of Fluid Viscosity on Cavitation Characteristics of a Helico-Axial Multiphase Pump (HAMP)

Author:

Ye Kaijie,He DenghuiORCID,Zhao Lin,Guo PengchengORCID

Abstract

Fluid viscosity is one of the key factors affecting the cavitation characteristics of the Helico-axial Multiphase Pump (HAMP). In this paper, fluids with viscosities of 24.46 mm2/s, 48.48 mm2/s, 60.70 mm2/s, and 120.0 mm2/s were investigated by numerical simulation. The Ansys Fluent software was employed to conduct the simulation. The mixture multiphase flow model and the RNG k-ε turbulence model were adopted. The Singhal cavitation model was employed to consider the effects of the non-condensable gas on cavitation. An experiment was carried out to validate the numerical method. The results showed that the Net Positive Suction Head-available (NPSHA) of the pump decreased as the fluid viscosity increased. Under the critical NPSHA condition, the NPSHA decreased from 5.11 m to 3.68 m as the fluid viscosity increased from 24.46 mm2/s to 120.0 mm2/s. This suggested that the cavitation performance of the pump was deteriorated under high fluid viscosity. The impeller passage area occupied by the vapor increased when the fluid viscosity increased. Nearly half of the flow passages were occupied by cavitation bubbles when the fluid viscosity increased to 120.0 mm2/s. The vapor volume fraction, both on the suction surface and pressure surface of the blade, increased with the fluid viscosity. The vapor on the suction surface was mainly distributed in the region with the streamwise between 0 and 0.36 when the fluid viscosity was 24.46 mm2/s; while the high vapor volume fraction range increased to the streamwise of 0.42 when the fluid viscosity increased to 120.0 mm2/s. The higher vapor volume fraction corresponded with the lower pressure. It was also found that the turbulent kinetic energy, both on the suction surface and pressure surface, increased with the fluid viscosity, which was the favorite for producing more cavitation bubbles. Furthermore, the maximum velocity area was mainly concentrated in the inlet area of the impeller. The velocity distribution in the impeller was basically the same with the viscosity of 24.46 mm2/s and 48.48 mm2/s. When the viscosity further increased to 60.70 mm2/s, the maximum velocity area in the impeller was relatively large. This study provides a reference for designing the HAMP.

Funder

Scientific Research Program for Youth Innovation Team Construction of the Shaanxi Provincial Department of Education

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3