Classical and Process Intensification Methods for Acetic Acid Concentration: Technical and Environmental Assessment

Author:

Petrescu Letitia,Cormos Codruta-Maria

Abstract

This study aims to investigate, from a technical and an environmental perspective, various alternatives for acetic acid concentration for maximizing acetic acid production, its purity, and in the meantime, minimizing the energy usage and the environmental impact. Liquid–liquid extraction followed by azeotropic distillation using different solvents such as: (i) ethyl acetate, (ii) isopropyl acetate, and (iii) a mixture containing isopropyl acetate and isopropanol were first explored, using process flow modeling software. The three cases were compared considering various technical key performance indicators (i.e., acetic acid flow-rate, acetic acid purity, acetic acid recovery, power consumption, thermal energy used, and number of equipment units involved) leading to the conclusion that the usage of the isopropyl acetate—isopropanol mixture leads to better technical results. The isopropanol-isopropyl acetate mixture was furthermore investigated in other two cases where process intensification methods, based on thermally coupled respectively the double-effect distillation process, are proposed. The highest quantity of pure acetic acid (e.g., 136 kmol/h) and the highest recovery rate (e.g., 97.74%) were obtained using the double-effect method. A cradle-to-gate life cycle assessment, involving ReCiPe method, was used to calculate and compare various environmental impact indicators (i.e., climate change, freshwater toxicity potential, human toxicity, etc.). Several steam sources (i.e., hard coal, heavy fuel oil, light fuel oil, natural gas, and biomass) were considered in the environmental evaluation. The results of the life cycle assessment show a reduction, by almost half, in all the environmental impact indicators when the double effect method is compared to the thermally coupled process. The usage of biomass for steam generation lead to lower impacts compared to steam generation using fossil fuels (i.e., hard coal, heavy fuel oil, light fuel oil, natural gas).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference40 articles.

1. Basso, T.P. (2020). Production Pathways of Acetic Acid and Its Versatile Applications in the Food Industry, IntechOpen.

2. Energy saving in acetic acid process using an azeotropic distillation column with a side stripper;Lee;Chem. Eng. Commun.,2018

3. (2022, April 23). Available online: https://www.chemanalyst.com/industry-report/acetic-acid-market-609.

4. (2022, April 23). Available online: https://ihsmarkit.com/products/acetic-acid-chemical-economics-handbook.html.

5. Cheung, H., Tanke, R.S., and Torrence, G.P. (2020). Acetic Acid. Ullmann’s Encyclopedia of Inustrial Chemistry, Wiley Online Library.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3