Integrated Assessment Method of Emergency Plan for Sudden Water Pollution Accidents Based on Improved TOPSIS, Shannon Entropy and a Coordinated Development Degree Model

Author:

Long Yan,Yang Yilin,Lei Xiaohui,Tian Yu,Li Youming

Abstract

Water is the source of all things, so it can be said that without the sustainable development of water resources, there can be no sustainable development of human beings. In recent years, sudden water pollution accidents have occurred frequently. Emergency response plan optimization is the key to handling accidents. Nevertheless, the non-linear relationship between various indicators and emergency plans has greatly prevented researchers from making reasonable assessments. Thus, an integrated assessment method is proposed by incorporating an improved technique for order preference by similarity to ideal solution, Shannon entropy and a Coordinated development degree model to evaluate emergency plans. The Shannon entropy method was used to analyze different types of index values. TOPSIS is used to calculate the relative closeness to the ideal solution. The coordinated development degree model is applied to express the relationship between the relative closeness and inhomogeneity of the emergency plan. This method is tested in the decision support system of the Middle Route Construction and Administration Bureau, China. By considering the different nature of the indicators, the integrated assessment method is eventually proven as a highly realistic method for assessing emergency plans. The advantages of this method are more prominent when there are more indicators of the evaluation object and the nature of each indicator is quite different. In summary, this integrated assessment method can provide a targeted reference or guidance for emergency control decision makers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3