Abstract
China is the largest carbon dioxide emitter in the world, and reducing China’s transportation carbon emissions is of great significance for the world. Using the Chinese provincial data from 2005–2015, this article analyzes the convergence characteristics of per capita transportation carbon emissions in China. It employs the log t regression test method and the club clustering algorithm developed by Phillips and Sul (2007) to separate the provinces and municipalities in China into three convergence clubs with different transportation carbon emission levels and one divergent group. Among them, the divergent group consisted of Beijing and Liaoning; the high carbon emission club consisted of Shanghai and Inner Mongolia; the low carbon emission club consisted of Jiangxi, Henan, Shandong, Hebei, and Sichuan; the medium carbon emission club consisted of the remaining 21 provinces and municipalities. On this basis, this article adopts the Ordered Logit model to explore factors influencing the formation of the convergence clubs. The regression results showed that the per capita transportation carbon emissions in the provinces with a high energy intensity of the transportation sector, a high urbanization level, or a high fixed assets investment intensity of the transportation sector tended to converge into the high carbon emission club.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献