Abstract
This paper proposes a genetic algorithm (GA) to find the pseudo-optimum of integrated process planning and scheduling (IPPS) problems. IPPS is a combinatorial optimization problem of the NP-complete class that aims to solve both process planning and scheduling simultaneously. The complexity of IPPS is very high because it reflects various flexibilities and constraints under flexible manufacturing environments. To cope with it, existing metaheuristics for IPPS have excluded some flexibilities and constraints from consideration or have built a complex structured algorithm. Particularly, GAs have been forced to construct multiple chromosomes to account for various flexibilities, which complicates algorithm procedures and degrades performance. The proposed new integrated chromosome representation makes it possible to incorporate various flexibilities into a single string. This enables the adaptation of a simple and typical GA procedure and previously developed genetic operators. Experiments on a set of benchmark problems showed that the proposed GA improved makespan by an average of 17% against the recently developed metaheuristics for IPPS in much shorter computation times.
Funder
National Research Foundation of Korea
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献