Effective Adsorption of Chlorinated Polyfluoroalkyl Ether Sulfonates from Wastewater by Nano-Activated Carbon: Performance and Mechanisms

Author:

Yi Hao12,Chen Xiaolin3,Liu Zewei4ORCID,Xi Hongxia3,Ding Zecong2,Cui Kai12,Hu Yongyou1

Affiliation:

1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China

2. South China Environmental Forensic Center, South China Institute of Environmental Science, Ministry of Ecology and Environment (MEE), Guangzhou 510655, China

3. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510006, China

4. School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, China

Abstract

Chlorinated polyfluoroalkyl ether sulfonates (F-53B) were often used as mist suppressants in the chrome plating industry, resulting in the large discharge of F-53B-containing electroplating wastewater into the aquatic environment. Due to the high toxicity of F-53B, increasing attention has been paid to its efficient removal from wastewater. In this study, three nano-activated carbons were successfully prepared from coconut shell carbons by a simple one-step KOH activation method. The nitrogen adsorption/desorption experiments showed that the synthesized coconut shell activated carbons possessed a well-developed nano-pore structure, which was favorable for the adsorption of F-53B. The results suggested that the adsorption of F-53B on the coconut shell activated carbons followed pseudo-second-order kinetics and was better fitted in the Langmuir isotherm, indicating that the adsorption of F-53B was mainly controlled by chemical adsorption and was mainly monolayer adsorption. Theoretical calculation results revealed that the faster adsorption rate of F-53B on CSAC_800 than on CSAC_600 and CSAC_700 could be contributed to the lower adsorption energy of F-53B on CSAC_800 and the higher self-diffusion coefficients of F-53B in CSAC_800. The higher adsorption capacity of CSAC_800 (qm = 537.6 mg·g−1) for F-53B than that of CSAC_600 (qm = 396.83 mg·g−1) and CSAC_700 (qm = 476.19 mg·g−1) could be attributed to the higher specific surface area and larger number of adsorption sites of CSAC_800. The results of this study demonstrate that coconut shell activated carbons with a well-developed nano-pore structure are an effective adsorbent for F-53B removal and have a good application prospect.

Funder

Fundamental Research Funds for the Central Public Welfare Research Institutes

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3