Data-Driven Parameter Prediction of Water Pumping Station

Author:

Zhang Jun1,Yu Yongchuan1,Yan Jianzhuo1,Chen Jianhui1

Affiliation:

1. Beijing International Collaboration Base on Brain Informatics and Wisdom Services, Beijing 100124, China

Abstract

In the construction process of an intelligent pumping station, the parameter calibration of the pumping station unit is very important. In actual engineering, the working parameters of the pumping station are affected by complex working conditions and natural factors, so that it is difficult to establish a traditional physical model for the pumping station. This paper uses a data-driven method to apply the hybrid model of the convolutional neural network (CNN) and long-term short-term memory network (LSTM) to water level prediction in pumping stations and adds self-attention mechanism feature selection and a bagging optimization algorithm. Then, after an error analysis of the hybrid model, a performance comparison experiment with the separate model was conducted. The historical data of the pumping station project provided by the Tuancheng Lake Management Office of Beijing South-to-North Water Diversion Project was used to train and verify the proposed pumping station water level prediction model. The results show that the CNN–LSTM model based on the self-attention mechanism has higher accuracy than the separate CNN model and LSTM model, with a correlation coefficient (R2) of 0.72 and a mean absolute error (MAE) of 19.14. The model can effectively solve the problem of water level prediction in the front and rear pools under complex pumping station conditions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3