A Fault Diagnosis Approach for Rolling Bearing Integrated SGMD, IMSDE and Multiclass Relevance Vector Machine

Author:

Yan Xiaoan,Liu Ying,Jia Minping

Abstract

The vibration signal induced by bearing local fault has strong nonstationary and nonlinear property, which indicates that the conventional methods are difficult to recognize bearing fault patterns effectively. Hence, to obtain an efficient diagnosis result, the paper proposes an intelligent fault diagnosis approach for rolling bearing integrated symplectic geometry mode decomposition (SGMD), improved multiscale symbolic dynamic entropy (IMSDE) and multiclass relevance vector machine (MRVM). Firstly, SGMD is employed to decompose the original bearing vibration signal into several symplectic geometry components (SGC), which is aimed at reconstructing the original bearing vibration signal and achieving the purpose of noise reduction. Secondly, the bat algorithm (BA)-based optimized IMSDE is presented to evaluate the complexity of reconstruction signal and extract bearing fault features, which can solve the problems of missing of partial fault information existing in the original multiscale symbolic dynamic entropy (MSDE). Finally, IMSDE-based bearing fault features are fed to MRVM for achieving the identification of bearing fault categories. The validity of the proposed method is verified by the experimental and contrastive analysis. The results show that our approach can precisely identify different fault patterns of rolling bearings. Moreover, our approach can achieve higher recognition accuracy than several existing methods involved in this paper. This study provides a new research idea for improvement of bearing fault identification.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3