Vulnerability Analysis of Geographical Railway Network under Geological Hazard in China

Author:

Yin Lingzhi,Zhu Jun,Li Wenshu,Wang Jinhong

Abstract

As the passenger railway network is expanding and improving, the internal connections and interdependence in the network are rising. Once a sudden geological hazard occurs and damages the network structure, the train service is prone to large-scale halt or delay. A geographical railway network is modeled to analyze the spatial distribution characteristics of the railway network as well as its vulnerability under typical geological hazards, such as earthquakes, collapses, landslides and debris flows. First, this paper modeled the geographical railway network in China based on the complex network method and analyzed the spatial distribution characteristics of the railway network. Then, the data of geological hazards along the railway that occurred over the years were crawled through the Internet to construct the hazard database to analyze the time–space distribution characteristics. Finally, based on the data of geological hazards along the railway and results of the susceptibility to geological hazards, the vulnerability of the geographical railway network was evaluated. Among these geological hazards, the greatest impact on railway safety operation came from earthquakes (48%), followed by landslides (28%), debris flows (17%) and collapses (7%). About 30% of the lines of the geographical railway network were exposed in the susceptibility areas. The most vulnerable railway lines included Sichuan–Guizhou Railway, Chengdu–Kunming Railway and Chengdu–Guiyang high-speed Railway in Southwest China, Lanzhou–Urumqi Railway and Southern Xinjiang Railway in Northwest China, and Beijing–Harbin Railway and Harbin–Manzhouli Railway in Northeast China. Therefore, professional railway rescue materials should be arranged at key stations in the above sections, with a view to improving the capability to respond to sudden geological hazards.

Funder

National Natural Science Foundation of China

Science Foundation of Zhejiang Sci-Tech University

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3