Improving the Accuracy in Sentiment Classification in the Light of Modelling the Latent Semantic Relations

Author:

Rizun Nina,Taranenko Yurii,Waloszek Wojciech

Abstract

The research presents the methodology of improving the accuracy in sentiment classification in the light of modelling the latent semantic relations (LSR). The objective of this methodology is to find ways of eliminating the limitations of the discriminant and probabilistic methods for LSR revealing and customizing the sentiment classification process (SCP) to the more accurate recognition of text tonality. This objective was achieved by providing the possibility of the joint usage of the following methods: (1) retrieval and recognition of the hierarchical semantic structure of the text and (2) development of the hierarchical contextually-oriented sentiment dictionary in order to perform the context-sensitive SCP. The main scientific contribution of this research is the set of the following approaches: at the phase of LSR revealing (1) combination of the discriminant and probabilistic models while applying the rules of adjustments to obtain the final joint result; at all SCP phases (2) considering document as a complex structure of topically completed textual components (paragraphs) and (3) taking into account the features of persuasive documents’ type. The experimental results have demonstrated the enhancement of the SCP accuracy, namely significant increase of average values of recall and precision indicators and guarantee of sufficient accuracy level.

Publisher

MDPI AG

Subject

Information Systems

Reference47 articles.

1. Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers;Anaya,2011

2. Latent Semantic Indexing: A Probabilistic Analysis

3. Method of a Two-Level Text-Meaning Similarity Approximation of the Customers’ Opinions;Rizun,2016

4. Sharing clusters among related groups: Hierarchical Dirichlet processes;Teh,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3