A NanoSIMS 50 L Investigation into Improving the Precision and Accuracy of the 235U/238U Ratio Determination by Using the Molecular 235U16O and 238U16O Secondary Ions

Author:

Zirakparvar N.,Hexel ColeORCID,Miskowiec Andrew,Smith Julie,Ambrogio Michael,Duckworth DouglasORCID,Kapsimalis Roger,Ticknor Brian

Abstract

A NanoSIMS 50 L was used to study the relationship between the 235U/238U atomic and 235U16O/238U16O molecular uranium isotope ratios determined from a variety of uranium compounds (UO2, UO2F2, UO3, UO2(NO3)2·6(H2O), and UF4) and silicates (NIST-610 glass and the Plesovice zircon reference materials, both containing µg/g uranium). Because there is typically a greater abundance of 235U16O+ and 238U16O+ molecular secondary ions than 235U+ and 238U+ atomic ions when uranium-bearing materials are sputtered with an oxygen primary ion beam, the goal was to understand whether use of 235U16O/238U16O has the potential for improved accuracy and precision when compared to the 235U/238U ratio. The UO2 and silicate reference materials showed the greatest potential for improved accuracy and precision through use of the 235U16O/238U16O ratio as compared to the 235U/238U ratio. For the UO2, which was investigated at a variety of primary beam currents, and the silicate reference materials, which were only investigated using a single primary beam current, this improvement was especially pronounced at low 235U+ count rates. In contrast, comparison of the 235U16O/238U16O ratio versus the 235U/238U ratio from the other uranium compounds clearly indicates that the 235U16O/238U16O ratio results in worse precision and accuracy. This behavior is based on the observation that the atomic (235U+ and 238U+) to molecular (235U16O+ and 238U16O+) secondary ion production rates remain internally consistent within the UO2 and silicate reference materials, whereas it is highly variable in the other uranium compounds. Efforts to understand the origin of this behavior suggest that irregular sample surface topography, and/or molecular interferences arising from the manner in which the UO2F2, UO3, UO2(NO3)2·6(H2O), and UF4 were prepared, may be a major contributing factor to the inconsistent relationship between the observed atomic and molecular secondary ion yields. Overall, the results suggest that for certain bulk compositions, use of the 235U16O/238U16O may be a viable approach to improving the precision and accuracy in situations where a relatively low 235U+ count rate is expected.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3