Real-Time Behavior of a Microalgae–Bacteria Consortium Treating Wastewater in a Sequencing Batch Reactor in Response to Feeding Time and Agitation Mode

Author:

Mhedhbi Emna,Khelifi Nadia,Foladori Paola,Smaali Issam

Abstract

A study of a microalgae–bacteria treatment system was conducted in a sequencing batch reactor (SBR) by combining a precultured native algae Nannochloropsis gaditana L2 with spontaneous municipal wastewater microorganisms. Two types of agitation, air mixing (AI) and mechanical mixing (MIX), were assessed at continuous illumination (L) and photoperiod cycle light/dark (L/D). The obtained consortium, via native microalgae addition, has a better operational efficiency compared to spontaneous control. This allows the removal of 78% and 53% of total Kjeldhal nitrogen (TKN) and chemical oxygen demand (COD), respectively. Under the (L/D) photoperiod, the optimal removal rate (90% of TKN and 75% of COD) was obtained by the consortium at 4 days of hydraulic retention time (HRT) using the AI mode. Moreover, during feeding during dark (D/L) photoperiod, the highest removal rate (83% TKN and 82% COD) was recorded at 4 days HRT using the AI mode. These results bring, at the scale of a bioreactor, new data regarding the mode of aeration and the feeding time. They prove the concept of such a technology, increasing the attraction of microalgae-based wastewater treatment.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3