Risk-Based and Hydrodynamic Pluvial Flood Forecasts in Real Time

Author:

Hofmann JulianORCID,Schüttrumpf HolgerORCID

Abstract

The effective forecast and warning of pluvial flooding in real time is one of the key elements and remaining challenges of an integrated urban flood risk management. This paper presents a new methodology for integrating risk-based solutions and 2D hydrodynamic models into the early warning process. Whereas existing hydrodynamic forecasting methods are based on rigid systems with extremely high computational demands, the proposed framework builds on a multi-model concept allowing the use of standard computer systems. As a key component, a pluvial flood alarm operator (PFA-Operator) is developed for selecting and controlling affected urban subcatchment models. By distributed computing of hydrologic independent models, the framework overcomes the issue of high computational times of hydrodynamic simulations. The PFA-Operator issues warnings and flood forecasts based on a two-step process: (1) impact-based rainfall thresholds for flood hotspots and (2) hydrodynamic real-time simulations of affected urban subcatchments models. Based on the open-source development software Qt, the system can be equipped with interchangeable modules and hydrodynamic software while building on the preliminary results of flood risk analysis. The framework was tested using a historic pluvial flood event in the city of Aachen, Germany. Results indicate the high efficiency and adaptability of the proposed system for operational warning systems in terms of both accuracy and computation time.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3