A Hybrid MPI-OpenMP Parallel Algorithm for the Assessment of the Multifractal Spectrum of River Networks

Author:

Primavera LeonardoORCID,Florio EmiliaORCID

Abstract

The possibility to create a flood wave in a river network depends on the geometric properties of the river basin. Among the models that try to forecast the Instantaneous Unit Hydrograph (IUH) of rainfall precipitation, the so-called Multifractal Instantaneous Unit Hydrograph (MIUH) rather successfully connects the multifractal properties of the river basin to the observed IUH. Such properties can be assessed through different types of analysis (fixed-size algorithm, correlation integral, fixed-mass algorithm, sandbox algorithm, and so on). The fixed-mass algorithm is the one that produces the most precise estimate of the properties of the multifractal spectrum that are relevant for the MIUH model. However, a disadvantage of this method is that it requires very long computational times to produce the best possible results. In a previous work, we proposed a parallel version of the fixed-mass algorithm, which drastically reduced the computational times almost proportionally to the number of Central Processing Unit (CPU) cores available on the computational machine by using the Message Passing Interface (MPI), which is a standard for distributed memory clusters. In the present work, we further improved the code in order to include the use of the Open Multi-Processing (OpenMP) paradigm to facilitate the execution and improve the computational speed-up on single processor, multi-core workstations, which are much more common than multi-node clusters. Moreover, the assessment of the multifractal spectrum has also been improved through a direct computation method. Currently, to the best of our knowledge, this code represents the state-of-the-art for a fast evaluation of the multifractal properties of a river basin, and it opens up a new scenario for an effective flood forecast in reasonable computational times.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3