Abstract
The O3/PMS system has appeared as an effective wastewater treatment method because of the simultaneous generation of hydroxyl radicals (•OH) and sulfate radicals (SO4•−). Many research achievements have been made on the degradation of micropollutants and the reaction mechanism of the O3/PMS system. However, an integral understanding of the O3/PMS system is lacking, which limits the development of safe and effective AOP-based water treatment schemes. Therefore, in this review, the degradation effects, toxicity changes, and reaction mechanisms of various micropollutants in the O3/PMS system are reviewed. The formation of oxidation by-products (OBPs) is an important issue that affects the practical application of O3/PMS systems. The formation mechanism and control methods of OBPs in the O3/PMS system are overviewed. In addition, the influence of different reaction conditions on the O3/PMS system are comprehensively evaluated. Finally, future research needs are proposed based on the limited understanding of O3/PMS systems in the degradation of micropollutants and formation of OBPs. Specifically, the formation rules of several kinds of OBPs during the O3/PMS system are not completely clear yet. Furthermore, pilot-scale research, the operational costs, sustainability, and general feasibility of the O3/PMS system also need to be studied. This review can offer a comprehensive assessment on the O3/PMS system to fill the knowledge gap and provide guidance for the future research and engineering applications of the O3/PMS system. Through this effort, the O3/PMS system can be better developed and turned towards practical applications.
Funder
National Natural Science Foundation of China
Shaanxi Science Fund for Distinguished Young Scholars
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献