Causal Vector Autoregression Enhanced with Covariance and Order Selection

Author:

Bolla Marianna1ORCID,Ye Dongze2ORCID,Wang Haoyu3ORCID,Ma Renyuan4,Frappier Valentin5,Thompson William6,Donner Catherine7,Baranyi Máté1ORCID,Abdelkhalek Fatma8ORCID

Affiliation:

1. Department of Stochastics, Budapest University of Technology and Economics, 1111 Budapest, Hungary

2. Department of Computer Science, University of Southern California, Los Angeles, CA 90007, USA

3. Committee on Computational and Applied Mathematics, University of Chicago, Chicago, IL 60637, USA

4. Department of Statistics, Yale University, New Haven, CT 06520, USA

5. UFR Sciences and Techniques, Nantes University, 44035 Nantes, France

6. Lindner College of Business, University of Cincinnati, Cincinnati, OH 45221, USA

7. Data Science and Analytics Institute, University of Oklahoma, Norman, OK 73019, USA

8. Department of Statistics, Mathematics, and Insurance, Faculty of Commerce, Assiut University, Assiut Governorate 71515, Egypt

Abstract

A causal vector autoregressive (CVAR) model is introduced for weakly stationary multivariate processes, combining a recursive directed graphical model for the contemporaneous components and a vector autoregressive model longitudinally. Block Cholesky decomposition with varying block sizes is used to solve the model equations and estimate the path coefficients along a directed acyclic graph (DAG). If the DAG is decomposable, i.e., the zeros form a reducible zero pattern (RZP) in its adjacency matrix, then covariance selection is applied that assigns zeros to the corresponding path coefficients. Real-life applications are also considered, where for the optimal order p≥1 of the fitted CVAR(p) model, order selection is performed with various information criteria.

Publisher

MDPI AG

Subject

Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3