Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models

Author:

Xue Lin1,Wang Liqun1ORCID

Affiliation:

1. Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Abstract

Regularized regression methods have attracted much attention in the literature, mainly due to its application in high-dimensional variable selection problems. Most existing regularization methods assume that the predictors are directly observed and precisely measured. It is well known that in a low-dimensional regression model if some covariates are measured with error, then the naive estimators that ignore the measurement error are biased and inconsistent. However, the impact of measurement error in regularized estimation procedures is not clear. For example, it is known that the ordinary least squares estimate of the regression coefficient in a linear model is attenuated towards zero and, on the other hand, the variance of the observed surrogate predictor is inflated. Therefore, it is unclear how the interaction of these two factors affects the selection outcome. To correct for the measurement error effects, some researchers assume that the measurement error covariance matrix is known or can be estimated using external data. In this paper, we propose the regularized instrumental variable method for generalized linear measurement error models. We show that the proposed approach yields a consistent variable selection procedure and root-n consistent parameter estimators. Extensive finite sample simulation studies show that the proposed method performs satisfactorily in both linear and generalized linear models. A real data example is provided to further demonstrate the usage of the method.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Reference27 articles.

1. Instrumental variable approach to covariate measurement error in generalized linear models;Abarin;Annals of the Institute of Statistical Mathematics,2012

2. Comorbidity of physical and mental disorders and the effect on work-loss days;Vollebergh;Acta Psychiatrica Scandinavica,2005

3. The dantzig selector: Statistical estimation when p is much larger than n;Candes;The Annals of Statistics,2007

4. A selective overview of variable selection in high dimensional feature space;Fan;Statistica Sinica,2010

5. Variable selection via nonconcave penalized likelihood and its oracle properties;Fan;Journal of the American Statistical Association,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3