Abstract
Large-dimensional dynamic factor models and dynamic stochastic general equilibrium models, both widely used in empirical macroeconomics, deal with singular stochastic vectors, i.e., vectors of dimension r which are driven by a q-dimensional white noise, with q < r . The present paper studies cointegration and error correction representations for an I ( 1 ) singular stochastic vector y t . It is easily seen that y t is necessarily cointegrated with cointegrating rank c ≥ r − q . Our contributions are: (i) we generalize Johansen’s proof of the Granger representation theorem to I ( 1 ) singular vectors under the assumption that y t has rational spectral density; (ii) using recent results on singular vectors by Anderson and Deistler, we prove that for generic values of the parameters the autoregressive representation of y t has a finite-degree polynomial. The relationship between the cointegration of the factors and the cointegration of the observable variables in a large-dimensional factor model is also discussed.
Subject
Economics and Econometrics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献