Affiliation:
1. Department of Economics, University of Kansas, Lawrence, KS 66045, USA
Abstract
This paper develops a Stein-like combined estimator for large heterogeneous panel data models under common structural breaks. The model allows for cross-sectional dependence through a general multifactor error structure. By utilizing the common correlated effects (CCE) estimation technique, we propose a Stein-like combined estimator of the CCE full-sample estimator (i.e., estimation using both the pre-break and post-break observations) and the CCE post-break estimator (i.e., estimation using only the post-break sample observations). The proposed Stein-like combined estimator benefits from exploiting the pre-break sample observations. We derive the optimal combination weight by minimizing the asymptotic risk. We show the superiority of the CCE Stein-like combined estimator over the CCE post-break estimator in terms of the asymptotic risk. Further, we establish the asymptotic properties of the CCE mean group Stein-like combined estimator. The finite sample performance of our proposed estimator is investigated using Monte Carlo experiments and an empirical application of predicting the output growth of industrialized countries.