Information-Criterion-Based Lag Length Selection in Vector Autoregressive Approximations for I(2) Processes

Author:

Bauer Dietmar1ORCID

Affiliation:

1. Department of Business Administration and Economics, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany

Abstract

When using vector autoregressive (VAR) models for approximating time series, a key step is the selection of the lag length. Often this is performed using information criteria, even if a theoretical justification is lacking in some cases. For stationary processes, the asymptotic properties of the corresponding estimators are well documented in great generality in the book Hannan and Deistler (1988). If the data-generating process is not a finite-order VAR, the selected lag length typically tends to infinity as a function of the sample size. For invertible vector autoregressive moving average (VARMA) processes, this typically happens roughly proportional to logT. The same approach for lag length selection is also followed in practice for more general processes, for example, unit root processes. In the I(1) case, the literature suggests that the behavior is analogous to the stationary case. For I(2) processes, no such results are currently known. This note closes this gap, concluding that information-criteria-based lag length selection for I(2) processes indeed shows similar properties to in the stationary case.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Economics and Econometrics

Reference11 articles.

1. Bauer, Dietmar, and Wagner, Martin (2004). Autoregressive Approximations to MFI(1) Processes, Institut für Höhere Studien (IHS).

2. Investigation of Production, Sales and Inventory relationships using multicointegration and non-symmetric error correction models;Granger;Journal of Applied Econometrics,1989

3. Hannan, Edward James, and Deistler, Manfred (1988). The Statistical Theory of Linear Systems, John Wiley.

4. Johansen, Søren (1995). Likelihood-Based Inference in Cointegrated Vector Auto-Regressive Models, Oxford University Press.

5. Juselius, Katarina (2006). The Cointegrated VAR Model: Methodology and Applications, Oxford University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3