Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing

Author:

Keller Merlin,Damblin Guillaume,Pasanisi Alberto,Schumann Mathieu,Barbillon PierreORCID,Ruggeri FabrizioORCID,Parent Eric

Abstract

In this paper, we present a case study aimed at determining a billing plan that ensures customer loyalty and provides a profit for the energy company, whose point of view is taken in the paper. The energy provider promotes new contracts for residential buildings, in which customers pay a fixed rate chosen in advance, based on an overall energy consumption forecast. For such a purpose, we consider a practical Bayesian framework for the calibration and validation of a computer code used to forecast the energy consumption of a building. On the basis of power field measurements, collected from an experimental building cell in a given period of time, the code is calibrated, effectively reducing the epistemic uncertainty affecting the most relevant parameters of the code (albedo, thermal bridge factor, and convective coefficient). The validation is carried out by testing the goodness of fit of the code with respect to the field measurements, and then propagating the posterior parametric uncertainty through the code, obtaining probabilistic forecasts of the average electrical power delivered inside the cell in a given period of time. Finally, Bayesian decision-making methods are used to choose the optimal fixed rate (for the energy provider) of the contract, in order to balance short-term benefits with customer retention. We identify three significant contributions of the paper. First of all, the case study data were never analyzed from a Bayesian viewpoint, which is relevant here not only for estimating the parameters but also for properly assessing the uncertainty about the forecasts. Furthermore, the study of optimal policies for energy providers in this framework is new, to the best of our knowledge. Finally, we propose Bayesian posterior predictive p-value for validation.

Funder

French Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3