Outliers in Semi-Parametric Estimation of Treatment Effects

Author:

Canavire-Bacarreza GustavoORCID,Castro Peñarrieta LuisORCID,Ugarte Ontiveros Darwin

Abstract

Outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric estimates. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage point outliers are considered. Bias arises in the case of bad leverage points because they completely change the distribution of the metrics used to define counterfactuals; good leverage points, on the other hand, increase the chance of breaking the common support condition and distort the balance of the covariates, which may push practitioners to misspecify the propensity score or the distance measures. We provide some clues to identify and correct for the effects of outliers following a reweighting strategy in the spirit of the Stahel-Donoho (SD) multivariate estimator of scale and location, and the S-estimator of multivariate location (Smultiv). An application of this strategy to experimental data is also implemented.

Publisher

MDPI AG

Subject

Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3