Multivariate Stochastic Volatility Modeling via Integrated Nested Laplace Approximations: A Multifactor Extension

Author:

Nacinben João Pedro Coli de Souza Monteneri1,Laurini Márcio1ORCID

Affiliation:

1. Department of Economics, FEARP-University of São Paulo, Ribeirão Preto 14040-905, Brazil

Abstract

This study introduces a multivariate extension to the class of stochastic volatility models, employing integrated nested Laplace approximations (INLA) for estimation. Bayesian methods for estimating stochastic volatility models through Markov Chain Monte Carlo (MCMC) can become computationally burdensome or inefficient as the dataset size and problem complexity increase. Furthermore, issues related to chain convergence can also arise. In light of these challenges, this research aims to establish a computationally efficient approach for estimating multivariate stochastic volatility models. We propose a multifactor formulation estimated using the INLA methodology, enabling an approach that leverages sparse linear algebra and parallelization techniques. To evaluate the effectiveness of our proposed model, we conduct in-sample and out-of-sample empirical analyses of stock market index return series. Furthermore, we provide a comparative analysis with models estimated using MCMC, demonstrating the computational efficiency and goodness of fit improvements achieved with our approach.

Funder

CNPq

FAPESP

Publisher

MDPI AG

Reference41 articles.

1. Multivariate volatility models: An application to Ibovespa and Dow Jones Industrial;Achcar;Cuadernos de Economía,2012

2. Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study;Andersen;Journal of Econometrics,1999

3. Bayesian predictive information criterion for the evaluation of hierarchical bayesian and empirical bayes models;Ando;Biometrika,2007

4. Multivariate stochastic volatility: A review;Asai;Econometric Reviews,2006

5. Black, Fischer (1976). Proceeding of the 1976 Meetings of the Business and Economics Statistics Section, American Statistical Association.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3