Individualized Stress Mobile Sensing Using Self-Supervised Pre-Training

Author:

Islam Tanvir1ORCID,Washington Peter1ORCID

Affiliation:

1. Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA

Abstract

Stress is widely recognized as a major contributor to a variety of health issues. Stress prediction using biosignal data recorded by wearables is a key area of study in mobile sensing research because real-time stress prediction can enable digital interventions to immediately react at the onset of stress, helping to avoid many psychological and physiological symptoms such as heart rhythm irregularities. Electrodermal activity (EDA) is often used to measure stress. However, major challenges with the prediction of stress using machine learning include the subjectivity and sparseness of the labels, a large feature space, relatively few labels, and a complex nonlinear and subjective relationship between the features and outcomes. To tackle these issues, we examined the use of model personalization: training a separate stress prediction model for each user. To allow the neural network to learn the temporal dynamics of each individual’s baseline biosignal patterns, thus enabling personalization with very few labels, we pre-trained a one-dimensional convolutional neural network (1D CNN) using self-supervised learning (SSL). We evaluated our method using the Wearable Stress and Affect Detection(WESAD) dataset. We fine-tuned the pre-trained networks to the stress-prediction task and compared against equivalent models without any self-supervised pre-training. We discovered that embeddings learned using our pre-training method outperformed the supervised baselines with significantly fewer labeled data points: the models trained with SSL required less than 30% of the labels to reach equivalent performance without personalized SSL. This personalized learning method can enable precision health systems that are tailored to each subject and require few annotations by the end user, thus allowing for the mobile sensing of increasingly complex, heterogeneous, and subjective outcomes such as stress.

Funder

National Institute of General Medical Sciences

Medical Research Award fund of the Hawai‘i Community Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3