Deep Learning-Enabled Heterogeneous Transfer Learning for Improved Network Attack Detection in Internal Networks

Author:

Wang Gang1ORCID,Liu Dong1,Zhang Chunrui1,Hu Teng1ORCID

Affiliation:

1. Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621000, China

Abstract

Cybersecurity faces constant challenges from increasingly sophisticated network attacks. Recent research shows machine learning can improve attack detection by training models on large labeled datasets. However, obtaining sufficient labeled data is difficult for internal networks. We propose a deep transfer learning model to learn common knowledge from domains with different features and distributions. The model has two feature projection networks to transform heterogeneous features into a common space, and a classification network then predicts transformed features into labels. To align probability distributions for two domains, maximum mean discrepancy (MMD) is used to compute distribution distance alongside classification loss. Though the target domain only has a few labeled samples, unlabeled samples are adequate for computing MMD to align unconditional distributions. In addition, we apply a soft classification scheme on unlabeled data to compute MMD over classes to further align conditional distributions. Experiments between NSL-KDD, UNSW-NB15, and CICIDS2017 validate that the method substantially improves cross-domain network attack detection accuracy.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Cisco (2020). Cisco Annual Internet Report (2018–2023) White Paper, Cisco Systems. Techreport.

2. Insight into insiders and IT: A survey of insider threat taxonomies, analysis, modeling, and countermeasures;Homoliak;ACM Comput. Surv. (CSUR),2019

3. A survey of network anomaly detection techniques;Ahmed;J. Netw. Comput. Appl.,2016

4. Detecting and preventing cyber insider threats: A survey;Liu;IEEE Commun. Surv. Tutor.,2018

5. Survey of intrusion detection systems: Techniques, datasets and challenges;Khraisat;Cybersecurity,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3