Affiliation:
1. State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
2. Key Laboratory of High-Performance Manufacturing for Advanced Composite Materials, Dalian 116024, China
Abstract
Laser direct joining enables non-destructive and lightweight joining of carbon fiber reinforced thermoplastic (CFRTP) composites and aluminum alloys. The interfacial bonding process determines the joint performance and is influenced by the time-varying temperature distribution. However, the interfacial bonding process occurs inside the joint, making it difficult to study the effect of temperature distribution. To resolve this issue, a novel online observation device for the interfacial bonding process between CFRTP composites and aluminum alloys is design, and the polymer melting, flowing, and bonding with metal during laser direct joining are observed. Further, temperature field simulation models for laser direct joining are established, and temperature distribution and gradient are calculated. The results show that the temperature distribution determines the melting of CFRTP composites, and bubbles generated by the thermal decomposition of the polymer hinder the melting. The temperature gradient is related to the movement of the molten matrix and fibers, and the movement towards the aluminum alloy induces cracking and delamination. Once the interface is filled with polymer, the motion changes to along the laser scanning direction and the joining defects are reduced. The study can provide a foundation for promoting interfacial bonding and reducing the defects of laser direct joining.
Funder
National Natural Science Foundation of China
Science and Technology Innovation Foundation of Dalian
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献