Research on the Identification of Bridge Structural Damage Using Variational Mode Decomposition and Convolutional Self-Attention Neural Networks

Author:

Liu Qi1,Nie Peng1,Dai Hualin1,Ning Liyuan1,Wang Jiaxing1

Affiliation:

1. School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China

Abstract

Convolutional neural networks (CNN) are widely used for structural damage identification. However, the presence of environmental disturbances introduces noise into the acquired acceleration response data, impairing the performance of CNN models. In this study, we apply empirical mode decomposition (EMD) and variational mode decomposition (VMD) to denoise the data from a steel truss bridge. By comparing the smoothness and convergence of the obtained modal functions (IMFs) using EMD and VMD, we confirm the effectiveness of VMD in smoothing and denoising the bridge structure signals. Additionally, we propose a convolutional self-attention neural network (CSANN) model to extract features and identify damage in the denoised data using VMD. Comparative analysis of the CNN, LSTM, and GRU models reveals that the VMD-CSANN model outperforms the others in terms of damage localization and identification accuracy. It also exhibits excellent performance when handling noise-contaminated data with a noise level of 10%. These findings demonstrate the efficacy of the proposed method for identifying internal damage in steel truss structures, while maintaining smoothness and robustness during processing.

Funder

Tianjin Municipal Science and Technology Commission Science and Technology Special Commissioner Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3